Course Type	Course Code	Name of Course	L	Т	P	Credit
DP	NGPC511	Advanced Numerical Methods- Practical	0	0	3	1.5

Course Objective

The primary objective of the course is to introduce hands on experience and practical programming skills in advanced numerical techniques for geo-physical problems.

Learning Outcomes

Upon successful completion of this course, students will have:

- practical skills on solving equations using numerical approach.
- practical skills on programming and algorithm development.
- Hands on experience on the development of numerical methods.

Unit No.	Details of Lectures	Lectures Hrs.	Outcome	
1.	Numerical programming of a polynomial fit to a sequence of data points using least square criterion	3	Hands on experience with curve fitting	
2.	Programming and numerically integrating Ordinary Differential Equations using explicit schemes. Calculation of the order of accuracy of the various schemes.	3	Learning skill of numerical programming	
3	Programming and numerical solution of 1-D Boundary Value problems using Matrix inversion method	3	Hands on experience with matrix structure	
4.	Writing a computer code to evaluate the finite difference stencils in two dimensions for the various partial differential operators on a structured 2D mesh.	3	Learning skill of coding mesh based operators	
5.	Solving system of linear PDE using Fourier series method.	3	Hands on experience with PDE solver coding	
6.	Numerical solution of the 1-D diffusion using semi- implicit finite difference scheme	3	Learning skill of programming ODE solver	
7.	Finding the convergence behavior of error in numerical solution of the 1D Poisson equation using various finite difference schemes	3	Hands on experience with finite difference eprogramming	
8.	Finite differences for the one-way wave equation using various methods. Computing the von Neumann growth factor.	3	Learning skill of numerical coding	
9.	Numerical programming to produce simple finite element stiffness matrices and plot various shape functions	3	Hands on experience with visual representation	
10.	Coding the pseudo-spectral differentiation Matrix.	3	Learning skill of numerical coding	

11.	Implementing spectral differentiation on a periodic domain.	3	Hands on experience with operator matrices
12.	Set up the sparse operator systems for the 1d, 2d and 3d Poisson equation.	3	Learning skill of programming sparse operators
13.	Solving Poisson equation using the pseudo spectral method.	3	Learning to code spectral solvers
14.	Writing both Serial and MPI-parallel versions of Matrix multiplication and determine the speed up attained through use of multiple cores.	3	Develop parallel computing skills
	Total	42	

Text books

- 1. Steven C. Chapra, Raymond P. Canale Numerical methods for engineers, Mcgraw-Hill ,2015. ISBN 978-0-07-339792-4
- 2. Lloyd N. Trefethen. Finite difference and spectral methods for ordinary and partial differential equations. 1996

Reference books

- 1. Trefethen, Lloyd N. Spectral Methods in MATLAB (Software, Environments, Tools). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2001. ISBN: 9780898714654.
- 2. Fletcher, C. A. J. Computational Techniques for Fluid Dynamics. Fundamental and General Techniques Volume I. Springer-Verlag, 1996. ISBN: 9783540530589.
- 3. Bathe, K.-J., Finite Element Procedures, Prentice-Hall, 1996. ISBN 0-13-301458-4.
- 4. Ferziger, J. H., and Peric, M., Computational Methods for Fluid Dynamics, Springer, Berlin, 356 p., 1996
- 5. Durran, D.R., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Vol. 32 of Texts in Applied Mathematics, Springer, 465 pp., New York, 1999.